Minggu, 15 Januari 2012

Jawaban Sistem I/O (V-class SO)

1.. 1..Gambarkan diagram dari Interrupt Driven I/O Cycle.

Jawab










2. 2.sebutkan langkah-langkah dari transfer DMA.

Jawab : * Prosesor menyiapkan DMA transfer dengan menyedia kan data-data dari device, operasi yang akan ditampilkan, alamat memori yang menjadi sumber dan tujuan data, dan banyaknya byte yang di transfer.

· DMA controller memulai operasi (menyiapkan bus, menyediakan alamat, menulis dan membaca data), sampai seluruh blok sudah di transfer.

· DMA controller meng-interupsi prosesor, dimana selanjutnya akan ditentukan tindakan berikutnya.

3. 3.apakah perbedaan dari polling dan interupsi..??

Jawab :Polling adalah prosesor tidak terus menerus menanyakan status dari peripheral tapi peripheral yang akan memberitahukan statusnya sekarang (menginterupsi prosesor). Dengan metode interrupt, sementara menunggu peripheral menyelesaikan tugasnya, prosesor dapat melakukan instruksi-instruksi lain. Jika peripheral memberikan sinyal interupsi pada prosesor , maka prosesor akan menyelesaikan instruksi yang sedang dikerjakannya sekarang, kemudian menyimpan semua state pada instruksi yang sedang dikerjakannya saat ini, kemudian mengekskusi suatu rutin yang dinamakan interrupt service routine (ISR) atau interrupt handler, anda sebagai programmer embedded system yang akan membuat ISR ini. Saat ISR selesai, maka prosesor kembali ke state sebelum interupsi. Kelebihan interrupt adalah interrupt lebih menghemat resource dibandingkan polling, tapi kekurangannya adalah interrupt memiliki jeda waktu (overhead) yang lebih lama dibanding polling.

4. 4. 4.apa hubungan arsitektur kernel yang di-thread dengan implementasi interupsi?
Jawab :Perangkat dapat menghasilkan interrupt signal. Setiap signal interrupt mempunyai hubungan dengan program kernel yang disebut dengan interrupt handl
e

in interface Aplikasi I/O

1. Kenapa dibutuhkan interface pada aplikasi I/O?
Jawab :Ketika suatu aplikasi ingin membuka data yang ada dalam suatu disk, sebenarnya aplikasi tersebut harus dapat membedakan jenis disk apa yang akan diaksesnya. Untuk mempermudah pengaksesan, sistem operasi melakukan standarisasi cara pengaksesan pada peralatan I/O. Pendekatan inilah yang dinamakan interface aplikasi I/O.Interface aplikasi I/O melibatkan abstraksi, enkapsulasi, dan software layering. Abstraksi dilakukan dengan membagi-bagi detail peralatan-peralatan I/O ke dalam kelas-kelas yang lebih umum.

2. Apa tujuan adanya device driver? Berikan contoh keuntungan yang kita dapatkan dengan adanya hal ini!
Jawab :Tujuan dari adanya lapisan device driver ini adalah untuk menyembunyikan perbedaan-perbedaan yang ada pada device controller dari subsistem I/O pada kernel. Karena hal ini, subsistem I/O dapat bersifat independen dari hardware.

Kernel I/O Subsystem

1. Apakah yang dimaksud dengan proses pooling? (jelaskan dengan jelas)
Jawab :Busy-waiting/ polling adalah ketika host mengalami looping yaitu membaca status register secara terus-menerus sampai status busy di-clear. Pada dasarnya polling dapat dikatakan efisien. Akan tetapi polling menjadi tidak efisien ketika setelah berulang-ulang melakukan looping, hanya menemukan sedikit device yang siap untuk men-service, karena CPU processing yang tersisa belum selesai.

2. Mengapa diperlukan proses pooling?
Jawab :Untuk mengatasi device yang tidak dapat me-multiplex permintaan I/O dari beberapa aplikasi.

3. Apakah yang dimaksud dengan buffer?
Jawab :Buffer adalah area memori yang menyimpan data ketika mereka sedang dipindahkan antara dua device atau antara device dan aplikasi.

4. Jelaskan dengan singkat mengenai I/O Scheduling!
Jawab :Untuk menjadualkan sebuah set permintaan I/O, kita harus menetukan urutan yang bagus untuk mengeksekusi permintaan tersebut. Scheduling dapat meningkatkan kemampuan sistem secara keseluruhan, dapat membagi device secara rata di antara proses-proses, dan dapat mengurangi waktu tunggu rata-rata untuk menyelesaikan I/O. Ini adalah contoh sederhana untuk menggambarkan definisi di atas. Jika sebuah arm disk terletak di dekat permulaan disk, dan ada tiga aplikasi yang memblokir panggilan untuk membaca untuk disk tersebut. Aplikasi 1 meminta sebuah blok dekat akhir disk, aplikasi 2 meminta blok yang dekat dengan awal, dan aplikasi 3 meminta bagian tengah dari disk. Sistem operasi dapat mengurangi jarak yang harus ditempuh oleh arm disk dengan melayani aplikasi tersebut dengan urutan 2, 3, 1. Pengaturan urutan pekerjaan kembali dengan cara ini merupakan inti dari I/O scheduling. Sistem operasi mengembangkan implementasi scheduling dengan menetapkan antrian permintaan untuk tiap device. Ketika sebuah aplikasi meminta sebuah blocking sistem I/O, permintaan tersebut dimasukkan ke dalam antrian untuk device tersebut. Scheduler I/O mengatur urutan antrian untuk meningkatkan efisiensi dari sistem dan waktu respon rata-rata yang harus dialami oleh aplikasi. Sistem operasi juga mencoba untuk bertindak secara adil, seperti tidak ada aplikasi yang menerima service yang buruk, atau dapat seperti memberi prioritas service untuk permintaan penting yang ditunda. Contohnya, pemintaan dari subsistem mungkin akan mendapatkan prioritas lebih tinggi daripada permintaan dari aplikasi. Beberapa algoritma scheduling untuk disk I/O akan dijelaskan ada bagian Disk Scheduling

Penanganan ermintaan I /O

1. Apakah kegunaan dari Streams pada Sistem V UNIX?
Jawab : Stream dapat digunakan untuk interproses dan komunikasi jaringan. Faktanya, di Sistem V, mekanisme soket diimplementasikan dengan stream.

Jelaskan lifecycle dari permintaan pembacaan blok!
Jawab : Sebuah proses mengeluarkan sebuah blocking read system call ke sebuah file deskriptor dari berkas yang telah dibuka sebelumnya.
• Kode system-call di kernel mengecek parameter untuk kebenaran. Dalam kasus input, jika data telah siap di buffer cache, data akan dikembalikan ke proses dan permintaan I/O diselesaikan.
• Jika data tidak berada dalam buffer cache, sebuah physical I/O akan bekerja, sehingga proses akan dikeluarkan dari antrian jalan (run queue) dan diletakkan di antrian tunggu (wait queue) untuk alat, dan permintaan I/O pun dijadwalkan. Pada akhirnya, subsistem I/O mengirimkan permintaan ke device driver. Bergantung pada sistem operasi, permintaan dikirimkan melalui call subrutin atau melalui pesan in-kernel.
• Device driver mengalokasikan ruang buffer pada kernel untuk menerima data, dan menjadwalkan I/O. Pada akhirnya, driver mengirim perintah ke device controller dengan menulis ke register device control.
• Device controller mengoperasikan piranti keras device untuk melakukan transfer data.
• Driver dapat menerima status dan data, atau dapat menyiapkan transfer DMA ke memori kernel. Kita mengasumsikan bahwa transfer diatur oleh sebuah DMA controller, yang meggunakan interupsi ketika transfer selesai.
• Interrupt handler yang sesuai menerima interupsi melalui tabel vektor-interupsi, menyimpan sejumlah data yang dibutuhkan, menandai device driver, dan kembali dari interupsi.
• Device driver menerima tanda, menganalisa permintaan I/O mana yang telah diselesaikan, menganalisa status permintaan, dan menandai subsistem I/O kernel yang permintaannya telah terselesaikan.
• Kernel mentransfer data atau mengembalikan kode ke ruang alamat dari proses permintaan, dan memindahkan proses dari antrian tunggu kembali ke antrian siap.
• Proses tidak diblok ketika dipindahkan ke antrian siap. Ketika penjadwal (scheduler) mengembalikan proses ke CPU, proses meneruskan eksekusi pada penyelesaian dari system call.

Tidak ada komentar:

Posting Komentar